4.7 Article

A first-principles study of NO adsorption and oxidation on Au(111) surface

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 129, 期 13, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2985668

关键词

-

资金

  1. National Natural Science Foundation of China [50721091, 20533030, 50731160010]
  2. National Key Basic Research Program [2006CB922004]
  3. USTC-HP HPC
  4. SCCAS and Shanghai Supercomputer Center

向作者/读者索取更多资源

Density functional theory and slab models are employed to study NO molecule adsorption and reaction on clean and atomic oxygen precovered Au(111) surfaces. While clean Au(111) surface is catalytically inert and can only weakly adsorb NO, an atomic oxygen precovered Au(111) surface is found to be very active to NO. On the clean surface, NO prefers to bond at the onefold on-top surface site with a tilted geometry. On 0.33 ML (monolayer) oxygen precovered surface NO reacts with chemisorbed oxygen to form chemisorbed NO2 by conquering a small energy barrier about 0.18 eV, and the desorption energy of NO2 is 0.64 eV. On 1.0 ML oxygen coverage surface, no barrier is found while NO reacts with precovered oxygen. The desorption energy of NO2 is 0.03 eV. The desorption of NO2 is the rate determining step on both surfaces and the overall reaction barriers are 0.64 and 0.03 eV, respectively. The activation energies depend on the initial coverage of oxygen, which compare favorably with experiments on Au surface with different oxygen coverages. (C) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据