4.7 Article

A simple classical model for predicting onset crystallization temperatures on curved substrates and its implications for phase transitions in confined volumes

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 129, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2977993

关键词

-

资金

  1. Engineering and Physical Sciences Research Council [GR/S94858/01] Funding Source: researchfish

向作者/读者索取更多资源

For small confinement volumes, phase transition temperatures are determined by the scarcity of the crystallizing material, rather than the magnitude of the energy barrier, as the supply of molecules undergoing the phase transition can be depleted before a stable nucleus is attained. We show this for the case of crystallization from the melt and from the solution by using a simple model based on an extended classical nucleation theory. This has important implications because it enables a simple and direct measurement of the critical nucleus size in crystallization. It also highlights that predicting the observable melting points of nanoparticles by using the Gibbs-Thomson equation can lead to substantial errors. (C) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据