4.7 Article

Model study for large deformation of physical polymeric gels

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 128, 期 13, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2894845

关键词

-

向作者/读者索取更多资源

A model for large deformation of polymer gels with physical cross-linking is developed and shown to be in good agreement with experimental stress-strain curves which show strain hardening in intermediate strains followed by strain softening in large deformations near the yield strain. The model takes into account the coil-helix transition equilibrium and allows for the distribution of the end-to-end distance. The gel is considered to be formed by long flexible chains and crystalline zones acting as junctions of the chains. The number of segments contained in a flexible chain is variable due to the equilibrium between the two regions. As the end-to-end distance increases due to the deformation, more and more segments are reeled out from the junction zone. Finally, one end of the chain is librated from the junction and the chain becomes dangling. The appearance of dangling chains causes the strain softening because they cease to contribute to the elasticity. From the parameter dependence of the stress-strain relations, it was found that the yield behavior depends strongly on the distribution of end-to-end distance. The yield strain is approximately given by the ratio of the upper limit of the number of segments and the average end-to-end distance. The standard deviation of the end-to-end distance affects significantly the width of the peak in the stress-strain curve, thus determining the degree of strain softening. (c) American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据