4.7 Article

A Computational Approach to Enzyme Design: Predicting ω-Aminotransferase Catalytic Activity Using Docking and MM-GBSA Scoring

期刊

JOURNAL OF CHEMICAL INFORMATION AND MODELING
卷 54, 期 8, 页码 2334-2346

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ci5002185

关键词

-

资金

  1. Schrodinger IT

向作者/读者索取更多资源

Enzyme design is an important area of ongoing research with a broad range of applications in protein therapeutics, biocatalysis, bioengineering, and other biomedical areas; however, significant challenges exist in the design of enzymes to catalyze specific reactions of interest. Here, we develop a computational protocol using an approach that combines molecular dynamics, docking, and MM-GBSA scoring to predict the catalytic activity of enzyme variants. Our primary focuses are to understand the molecular basis of substrate recognition and binding in an S-stereoselective omega-aminotransferase (omega-AT), which naturally catalyzes the transamination of pyruvate into alanine, and to predict mutations that enhance the catalytic efficiency of the enzyme. The conversion of (R)-ethyl 5-methyl-3-oxooctanoate to (3S,5R)-ethyl 3-amino-5-methyloctanoate in the context of several omega-AT mutants was evaluated using the computational protocol developed in this work. We correctly identify the mutations that yield the greatest improvements in enzyme activity (20-60-fold improvement over wild type) and confirm that the computationally predicted structure of a highly active mutant reproduces key structural aspects of the variant, including side chain conformational changes, as determined by X-ray crystallography. Overall, the protocol developed here yields encouraging results and suggests that computational approaches can aid in the redesign of enzymes with improved catalytic efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据