4.2 Article

Semiclathrate Hydrate Phase Equilibrium for CO2/CH4 Gas Mixtures in the Presence of Tetrabutylammonium Halide (Bromide, Chloride, or Fluoride)

期刊

JOURNAL OF CHEMICAL AND ENGINEERING DATA
卷 58, 期 11, 页码 3137-3141

出版社

AMER CHEMICAL SOC
DOI: 10.1021/je4005933

关键词

-

资金

  1. National Natural Science Foundation of China [51176051, 51106054]
  2. PetroChina Innovation Foundation [2012D-5006-0210]
  3. National Basic Research Program of China (973 Program) [2009CB219504-03]
  4. Fundamental Research Funds for the Central Universities [2013ZZ0032, 2013ZM0036]
  5. Colleges and Universities High-level Talents Program of Guangdong

向作者/读者索取更多资源

In this paper, hydrate phase equilibrium data for the CO2/CH4 + water system, CO2/CH4 + tetrabutylammonium bromide (TBAB) + water system, CO2/CH4 + tetrabutylammonium chloride (TBAC) + water system, and CO2/CH4 + tetrabutylammonium fluoride (TBAF) + water system were measured at temperatures from 280.2 K to 291.3 K and pressures from 0.61 MPa to 9.45 MPa with the 2.93.10(-3) mole fraction of tetrabutylammonium halide. The equilibrium hydrate formation conditions were measured by an isochoric pressure-search method. The mole fractions of the mixture gas used in this work were 0.33 CO2 and 0.67 CH4. The experimental data for the CH4 + water system were contrasted with the published equilibrium data in the literature. Both have a good consistency, which demonstrates that the experimental method and the apparatus used in this paper are feasible and reliable. The experiment results show that the hydrate stable region was enlarged by adding TBAB, TBAC, or TBAF. Among the three additives, TBAF is the best and the enlarged extent order of three additives is TBAF > TBAC > TBAB. The three-phase equilibrium pressure of the CO2/CH4 + TBAF + water system is 0.61 MPa at 284.2 K.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据