4.7 Article

Three Dimensional Cultures of Rat Liver Cells Using a Natural Self-Assembling Nanoscaffold in a Clinically Relevant Bioreactor for Bioartificial Liver Construction

期刊

JOURNAL OF CELLULAR PHYSIOLOGY
卷 227, 期 1, 页码 313-327

出版社

WILEY-BLACKWELL
DOI: 10.1002/jcp.22738

关键词

-

资金

  1. Medicine faculty of University of Leipzig

向作者/读者索取更多资源

Till date, no bioartificial liver (BAL) procedure has obtained FDA approval or widespread clinical acceptance, mainly because of multifactorial limitations such as the use of microscale or undefined biomaterials, indirect and lower oxygenation levels in liver cells, short-term undesirable functions, and a lack of 3D interaction of growth factor/cytokine signaling in liver cells. To overcome preclinical limitations, primary rat liver cells were cultured on a naturally self-assembling peptide nanoscaffold (SAPN) in a clinically relevant bioreactor for up to 35 days, under 3D interaction with suitable growth factors and cytokine signaling agents, alone or combination (e.g., Group I: EPO, Group II: Activin A, Group III: IL-6, Group IV: BMP-4, Group V: BMP4+EPO, Group VI: EPO+IL-6, Group VII: BMP4+IL-6, Group VIII: Activin A+EPO, Group IX: IL-6+Activin A, Group X: Activin A+BMP4, Group XI: EPO+Activin A+BMP-4+IL- 6+HGF, and Group XII: Control). Major liver specific functions such as albumin secretion, urea metabolism, ammonia detoxification, phase contrast microscopy, immunofluorescence of liver specific markers (Albumin and CYP3A1), mitochondrial status, glutamic oxaloacetic transaminase (GOT) activity, glutamic pyruvic transaminase (GPT) activity, and cell membrane stability by the lactate dehydrogenase (LDH) test were also examined and compared with the control over time. In addition, we examined the drug biotransformation potential of a diazepam drug in a two-compartment model (cell matrix phase and supernatant), which is clinically important. This present study demonstrates an optimized 3D signaling/scaffolding in a preclinical BAL model, as well as preclinical drug screening for better drug development. J. Cell. Physiol. 227: 313-327, 2012. (C) 2011 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据