4.8 Article

Surface modulation of silicon nitride ceramics for orthopaedic applications

期刊

ACTA BIOMATERIALIA
卷 26, 期 -, 页码 318-330

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2015.08.014

关键词

Silicon nitride; Bioceramics; Orthopaedic implants; Surface chemistry

资金

  1. College of Engineering, Health Sciences Center, Office of the Vice President for Research
  2. Utah Science Technology and Research (USTAR) initiative of the State of Utah
  3. College of Engineering, Office of the Vice President for Research

向作者/读者索取更多资源

Silicon nitride (Si3N4) has a distinctive combination of material properties such as high strength and fracture toughness, inherent phase stability, scratch resistance, low wear, biocompatibility, hydrophilic behavior, excellent radiographic imaging and resistance to bacterial adhesion, all of which make it an attractive choice for orthopaedic implants. Unlike oxide ceramics, the surface chemistry and topography of Si3N4 can be engineered to address potential in vivo needs. Morphologically, it can be manufactured to have an ultra-smooth or highly fibrous surface structure. Its chemistry can be varied from that of a silica-like surface to one which is predominately comprised of silicon-amines. In the present study, a Si3N4 bioceramic was subjected to thermal, chemical, and mechanical treatments in order to induce changes in surface composition and features. The treatments included grinding and polishing, etching in aqueous hydrofluoric acid, and heating in nitrogen or air. The treated surfaces were characterized using a variety of microscopy techniques to assess morphology. Surface chemistry and phase composition were determined using X-ray photoelectron and Raman spectroscopy, respectively. Streaming potential measurements evaluated surface charging, and sessile water drop techniques assessed wetting behavior. These treatments yielded significant differences in surface properties with isoelectric points ranging from 2 to 5.6, and moderate to extremely hydrophilic water contact angles from similar to 65 degrees to similar to 8 degrees. This work provides a basis for future in vitro and in vivo studies which will examine the effects of these treatments on important orthopaedic properties such as friction, wear, protein adsorption, bacteriostasis and osseointegration. Statement of Significance Silicon nitride (Si3N4) exhibits a unique combination of bulk mechanical and surface chemical properties that make it an ideal biomaterial for orthopaedic implants. It is already being used for interbody spinal fusion cages and is being developed for total joint arthroplasty. Its surface texture and chemistry are both highly tunable, yielding physicochemical combinations that may lead to enhanced osseointegration and bacterial resistance without compromising bulk mechanical properties. This study demonstrates the ease with which significant changes to Si3N4's surface phase composition, charging, and wetting behavior can be induced, and represents an initial step towards a mechanistic understanding of the interaction between implant surfaces and the biologic environment. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据