4.7 Article

A computational analysis of the neural bases of Bayesian inference

期刊

NEUROIMAGE
卷 106, 期 -, 页码 222-237

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2014.11.007

关键词

Event-related potentials; Single-trial EEG; Free-energy principle; Bayesian brain; Surprise; Probability weighting

资金

  1. Deutsche Forschungsgemeinschaft (DFG) via a Future Fund of Technische Universitat Braunschweig [725 508 02]

向作者/读者索取更多资源

Empirical support for the Bayesian brain hypothesis, although of major theoretical importance for cognitive neuroscience, is surprisingly scarce. This hypothesis posits simply that neural activities code and compute Bayesian probabilities. Here, we introduce an urn-ball paradigmto relate event-related potentials (ERPs) such as the P300 wave to Bayesian inference. Bayesian model comparison is conducted to compare various models in terms of their ability to explain trial-by-trial variation in ERP responses at different points in time and over different regions of the scalp. Specifically, we are interested in dissociating specific ERP responses in terms of Bayesian updating and predictive surprise. Bayesian updating refers to changes in probability distributions given new observations, while predictive surprise equals the surprise about observations under current probability distributions. Components of the late positive complex (P3a, P3b, Slow Wave) provide dissociable measures of Bayesian updating and predictive surprise. Specifically, the updating of beliefs about hidden states yields the best fit for the anteriorly distributed P3a, whereas the updating of predictions of observations accounts best for the posteriorly distributed Slow Wave. In addition, parietally distributed P3b responses are best fit by predictive surprise. These results indicate that the three components of the late positive complex reflect distinct neural computations. As such they are consistent with the Bayesian brain hypothesis, but these neural computations seem to be subject to nonlinear probability weighting. We integrate these findings with the free-energy principle that instantiates the Bayesian brain hypothesis. (C) 2014 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据