4.8 Article

Mesoporous Y zeolite with homogeneous aluminum distribution obtained by sequential desilication-dealumination and its performance in the catalytic cracking of cumene and 1,3,5-triisopropylbenzene

期刊

JOURNAL OF CATALYSIS
卷 278, 期 2, 页码 266-275

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcat.2010.12.013

关键词

Y zeolite; Ammonium hexafluorosilicate; Desilication; Dealumination; Mesopore; Catalytic cracking; Aluminum-silicon distribution

资金

  1. MOST of China [2010CB226904]
  2. PetroChina
  3. NSFC [20876171]

向作者/读者索取更多资源

The aluminum-silicon distribution and mesoporosity of Y zeolites prepared by sequential NaOH desilication and ammonium hexafluorosilicate (AHFS) dealumination are compared with that of Y samples prepared via AHFS dealumination only. AHFS treatment led to severe non-uniform dealumination and substantial surface silicon deposition. Y samples obtained by sequential desilication and dealumination had substantially better dealumination uniformity and aluminum-silicon distribution. The mesopore formation in these zeolites is discussed in detail. The desilication creates defects in the framework of the parent NaY zeolite. These defects improve the intra-crystalline transport and induce mesopore formation during dealumination. The desilication- plus dealumination-treated zeolites showed higher initial activity and lower deactivation tendency in the case of 13,5-triisopropylbenzene cracking, and higher conversion rate of cumene than those zeolites modified by AHFS treatment only. These catalytic data indicate that the former could be a viable catalyst in the catalytic cracking of heavy hydrocarbons. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Chemistry, Physical

Robust PtRu catalyst regulated via cyclic electrodeposition for electrochemical production of cyclohexanol

Yifan Sun, Ye Lv, Wei Li, Jinli Zhang, Yan Fu

Summary: In this study, PtRu electrocatalysts were fabricated on carbon paper via cyclic electrodeposition for the electrocatalytic hydrogenation (ECH) of phenol. The Pt3Ru3 catalyst exhibited excellent activity and stability for the conversion of phenol to cyclohexanol at ambient temperature and various current densities. The in situ Raman spectroscopy and kinetic study revealed the hydrogenation mechanism of phenol over Pt3Ru3 in acidic electrolyte, providing an effective electrochemical strategy for the facile construction of durable electrode materials and efficient phenol hydrogenation.

JOURNAL OF CATALYSIS (2024)

Article Chemistry, Physical

Escalating the synergism on CdZnS via Ag2S/Cu2S co-catalysts: Boosts hydrogen evolution from water splitting under sunlight

Amir Shahzad, Khezina Rafiq, Muhammad Zeeshan Abid, Naseem Ahmad Khan, Syed Shoaib Ahmad Shah, Raed H. Althomali, Abdul Rauf, Ejaz Hussain

Summary: Photocatalytic hydrogen production through water splitting is an effective method for meeting future energy demands. In this study, researchers synthesized a 1 % Ag2S/Cu2S co-doped CdZnS catalyst and found that it can produce hydrogen at a higher rate. The co-doping of Ag2S and Cu2S in the CdZnS catalyst showed a synergistic effect, with Ag2S promoting oxidation reactions and Cu2S promoting reduction reactions.

JOURNAL OF CATALYSIS (2024)