4.2 Article

Prevention of Ventricular Arrhythmia and Calcium Dysregulation in a Catecholaminergic Polymorphic Ventricular Tachycardia Mouse Model Carrying Calsequestrin-2 Mutation

期刊

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY
卷 22, 期 3, 页码 316-324

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1540-8167.2010.01877.x

关键词

antiarrhythmia agents; calcium; calsequestrin-2; CPVT; mouse model; sudden death

资金

  1. HHMI
  2. Machiah Foundation

向作者/读者索取更多资源

Method and results: CPVT mouse models that lack CASQ2 were treated with Ca2+-channel inhibitors, beta-adrenergic inhibitors, or Mg2+. Treatment effects on ventricular arrhythmia, sarcoplasmic reticulum (SR) protein expression and Ca2+ transients of isolated myocytes were assessed. Each study agent reduced the frequency of stress-induced ventricular arrhythmia in mutant mice. The Ca2+ channel blocker verapamil was most efficacious and completely prevented arrhythmia in 85% of mice. Verapamil significantly increased the SR Ca2+ content in mutant myocytes, diminished diastolic Ca2+ overload, increased systolic Ca2+ amplitude, and prevented Ca2+ oscillations in stressed mutant myocytes. Conclusions: Ca2+ channel inhibition by verapamil rectified abnormal calcium handling in CPVT myocytes and prevented ventricular arrhythmias. Verapamil-induced partial normalization of SR Ca2+ content in mutant myocytes implicates CASQ2 as modulator of RyR2 activity, rather than or in addition to, Ca2+ buffer protein. Agents such as verapamil that attenuate cardiomyocyte calcium overload are appropriate for assessing clinical efficacy in human CPVT. (J Cardiovasc Electrophysiol, Vol. 22, pp. 316-324, March 2011).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据