4.5 Article

Age-related microstructural differences quantified using myelin water imaging and advanced diffusion MRI

期刊

NEUROBIOLOGY OF AGING
卷 36, 期 6, 页码 2107-2121

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.neurobiolaging.2015.02.029

关键词

Aging; Relaxometry; Myelin water imaging; Diffusion MRI; Healthy; Kurtosis

资金

  1. European Union [279281]
  2. KU Leuven [PFV/10/008]
  3. KU Leuven international mobility bursary

向作者/读者索取更多资源

Age-related microstructural differences have been detected using diffusion tensor imaging (DTI). Although DTI is sensitive to the effects of aging, it is not specific to any underlying biological mechanism, including demyelination. Combining multiexponential T2 relaxation (MET2) and multishell diffusion MRI (dMRI) techniques may elucidate such processes. Multishell dMRI and MET2 data were acquired from 59 healthy participants aged 17-70 years. Whole-brain and regional age-associated correlations of measures related to multiple dMRI models (DTI, diffusion kurtosis imaging [DKI], neurite orientation dispersion and density imaging [NODDI]) and myelin-sensitive MET2 metrics were assessed. DTI and NODDI revealed widespread increases in isotropic diffusivity with increasing age. In frontal white matter, fractional anisotropy linearly decreased with age, paralleled by increased neurite dispersion and no difference in myelin water fraction. DKI measures and neurite density correlated well with myelin water fraction and intracellular and extracellular water fraction. DTI estimates remain among the most sensitive markers for age-related alterations in white matter. NODDI, DKI, and MET2 indicate that the initial decrease in frontal fractional anisotropy may be due to increased axonal dispersion rather than demyelination. (C) 2015 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据