4.6 Article

Positive Regulation of Osteogenesis by Bile Acid Through FXR

期刊

JOURNAL OF BONE AND MINERAL RESEARCH
卷 28, 期 10, 页码 2109-2121

出版社

WILEY-BLACKWELL
DOI: 10.1002/jbmr.1961

关键词

FXR (FARNESOID X RECEPTOR); BILE ACID; OSTEOBLAST DIFFERENTIATION; OVARIECTOMY

资金

  1. Ministry of Education, Science and Technology of Korea [2010-0026991]
  2. National Research Foundation of Korea [2010-0026991] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Farnesoid X receptor (FXR) is a nuclear receptor that functions as a bile acid sensor controlling bile acid homeostasis. We investigated the role of FXR in regulating bone metabolism. We identified the expression of FXR in calvaria and bone marrow cells, which gradually increased during osteoblastic differentiation in vitro. In male mice, deletion of FXR (FXR-/-) in vivo resulted in a significant reduction in bone mineral density by 4.3% to 6.6% in mice 8 to 20 weeks of age compared with FXR+/+ mice. Histological analysis of the lumbar spine showed that FXR deficiency reduced the bone formation rate as well as the trabecular bone volume and thickness. Moreover, tartrate-resistant acid phosphatase (TRACP) staining of the femurs revealed that both the osteoclast number and osteoclast surface were significantly increased in FXR-/- mice compared with FXR+/+ mice. At the cellular level, induction of alkaline phosphatase (ALP) activities was blunted in primary calvarial cells in FXR-/- mice compared with FXR+/+ mice in concert with a significant reduction in type I collagen a1(Col1a1), ALP, and runt-related transcription factor 2 (Runx2) gene expressions. Cultures of bone marrow-derived macrophages from FXR-/- mice exhibited an increased number of osteoclast formations and protein expression of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1). In female FXR-/- mice, although bone mineral density (BMD) was not significantly different from that in FXR+/+ mice, bone loss was accelerated after an ovariectomy compared with FXR+/+ mice. In vitro, activation of FXR by bile acids (chenodeoxycholic acid [CDCA] or 6-ECDCA) or FXR agonists (GW4064 or Fexaramine) significantly enhanced osteoblastic differentiation through the upregulation of Runx2 and enhanced extracellular signal-regulated kinase (ERK) and -catenin signaling. FXR agonists also suppressed osteoclast differentiation from bone marrow macrophages. Finally, administration of a farnesol (FOH 1%) diet marginally prevented ovariectomy (OVX)-induced bone loss and enhanced bone mass gain in growing C57BL/6J mice. Taken together, these results suggest that FXR positively regulates bone metabolism through both arms of the bone remodeling pathways; ie, bone formation and resorption. (c) 2013 American Society for Bone and Mineral Research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据