4.5 Article

Conversion of Thermobifida fusca free exoglucanases into cellulosomal components:: Comparative impact on cellulose-degrading activity

期刊

JOURNAL OF BIOTECHNOLOGY
卷 135, 期 4, 页码 351-357

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jbiotec.2008.05.003

关键词

designer cellulosomes; cellulose degradation; processivity; cohesin dockerin

向作者/读者索取更多资源

Cellulosomes are multi-enzyme complexes produced by certain anaerobic bacteria that exhibit efficient degradation of plant cell wall polysaccharides. To understand their enhanced levels of hydrolysis, we are investigating the effects of converting a free-cellulase system into a cellulosomal one. To achieve this end, we are replacing the cell ulose-binding module of the native cellulases, produced by the aerobic bacterium Thermobifida fusca, with a cellulosome-derived dockerin module of established specificity, to allow their incorporation into defined designer cellulosomes. In this communication, we have attached divergent dockerins to the two exoglucanases produced by T. fusca exoglucanase, Cel6B and Cel48A. The resultant fusion proteins were shown to bind efficiently and specifically to their matching cohesins, and their activities on several different cellulose substrates were compared. The lack of a cellulose-binding module in Cel6B had a deleterious effect on its activity on crystalline substrates. In contrast, the dockerin-hearing family-48 exoglucanase showed increased levels of hydrolytic activity on carboxymethyl cellulose and on both Crystalline Substrates tested, compared to the wild-type enzyme. The marked difference in the response of the two exoglucanases to incorporation into a cellulosome, Suggests that the family-48 cellulase is more appropriate than the family-6 enzyme as a designer cellulosome component. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据