4.5 Article

An Ant Colony Optimization Based Dimension Reduction Method for High-Dimensional Datasets

期刊

JOURNAL OF BIONIC ENGINEERING
卷 10, 期 2, 页码 231-241

出版社

SPRINGER SINGAPORE PTE LTD
DOI: 10.1016/S1672-6529(13)60219-X

关键词

gene selection; feature selection; ant colony optimization; high-dimensional data

向作者/读者索取更多资源

In this paper, a bionic optimization algorithm based dimension reduction method named Ant Colony Optimization-Selection (ACO-S) is proposed for high-dimensional datasets. Because microarray datasets comprise tens of thousands of features (genes), they are usually used to test the dimension reduction techniques. ACO-S consists of two stages in which two well-known ACO algorithms, namely ant system and ant colony system, are utilized to seek for genes, respectively. In the first stage, a modified ant system is used to filter the nonsignificant genes from high-dimensional space, and a number of promising genes are reserved in the next step. In the second stage, an improved ant colony system is applied to gene selection. In order to enhance the search ability of ACOs, we propose a method for calculating priori available heuristic information and design a fuzzy logic controller to dynamically adjust the number of ants in ant colony system. Furthermore, we devise another fuzzy logic controller to tune the parameter (q(0)) in ant colony system. We evaluate the performance of ACO-S on five microarray datasets, which have dimensions varying from 7129 to 12000. We also compare the performance of ACO-S with the results obtained from four existing well-known bionic optimization algorithms. The comparison results show that ACO-S has a notable ability to generate a gene subset with the smallest size and salient features while yielding high classification accuracy. The comparative results generated by ACO-S adopting different classifiers are also given. The proposed method is shown to be a promising and effective tool for mining high-dimension data and mobile robot navigation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据