4.3 Article

Solution structure of tRNAVal from refinement of homology model against residual dipolar coupling and SAXS data

期刊

JOURNAL OF BIOMOLECULAR NMR
卷 42, 期 2, 页码 99-109

出版社

SPRINGER
DOI: 10.1007/s10858-008-9267-x

关键词

NMR; RDC; refinement; rigid body; SAXS; tRNA

资金

  1. NIDDK
  2. NIH [AI33098]

向作者/读者索取更多资源

A procedure is presented for refinement of a homology model of E. coli tRNA(Val), originally based on the X-ray structure of yeast tRNA(Phe), using experimental residual dipolar coupling (RDC) and small angle X-ray scattering (SAXS) data. A spherical sampling algorithm is described for refinement against SAXS data that does not require a globbic approximation, which is particularly important for nucleic acids where such approximations are less appropriate. Substantially higher speed of the algorithm also makes its application favorable for proteins. In addition to the SAXS data, the structure refinement employed a sparse set of NMR data consisting of 24 imino N-H(N) RDCs measured with Pf1 phage alignment, and 20 imino N-H(N) RDCs obtained from magnetic field dependent alignment of tRNA(Val). The refinement strategy aims to largely retain the local geometry of the 58% identical tRNA(Phe) by ensuring that the atomic coordinates for short, overlapping segments of the ribose-phosphate backbone and the conserved base pairs remain close to those of the starting model. Local coordinate restraints are enforced using the non-crystallographic symmetry (NCS) term in the XPLOR-NIH or CNS software package, while still permitting modest movements of adjacent segments. The RDCs mainly drive the relative orientation of the helical arms, whereas the SAXS restraints ensure an overall molecular shape compatible with experimental scattering data. The resulting structure exhibits good cross-validation statistics (jack-knifed Q(free) = 14% for the Pf1 RDCs, compared to 25% for the starting model) and exhibits a larger angle between the two helical arms than observed in the X-ray structure of tRNA(Phe), in agreement with previous NMR-based tRNA(Val) models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据