4.5 Article

Distribution of metal released from cobalt-chromium alloy orthopaedic wear particles implanted into air pouches in mice

期刊

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
卷 100A, 期 6, 页码 1529-1538

出版社

WILEY
DOI: 10.1002/jbm.a.34091

关键词

implantation of Co-Cr alloy wear particles; cobalt disposition; chromium disposition; metal-induced oxidative stress; mouse air pouch implantation model

资金

  1. DePuy International
  2. EPSRC

向作者/读者索取更多资源

Metal-on-metal hip replacement implants generate wear debris and release ions both locally and systemically in patients. To investigate dissemination of metal, we determined blood and organ levels of cobalt (Co), chromium (Cr), and molybdenum (Mo) following the implantation of CoCr alloy wear debris in mice using skin pouches as a model system. We observed increased metal levels in blood for up to 72 h; the levels of Co were highest and remained elevated for 7 days. Co levels were elevated in all organs studied (liver, kidney, spleen, lung, heart, brain, and testes), with the peak at 48 h; highest levels were measured in liver and kidney (838.9 +/- 223.7 ng/g in liver, and 938.8 +/- 131.6 ng/g in kidney). Organ Cr levels were considerably lower than Co levels, for example, Cr in kidney was 117.2 +/- 12.6 ng/g tissue at 48 h. Co is more mobile than Cr, reaching higher levels at earlier time points. This could be due to local tissue binding of Cr. Exposure to CoCr particles in vivo altered antioxidant enzyme expression and activities. We observed induction of catalase protein in the liver and glutathione reductase (GR) and peroxidase (GPx) proteins in the spleen. Activities of catalase and GPx in the liver were significantly increased while that of GR was decreased in the kidney. Organs of mice with CoCr particle implantation were exposed to increased metal levels capable of inducing reactive oxygen species scavenging enzymes, suggesting the tissue may be subjected to oxidative stress; however, the overall antioxidant defence system was not markedly disturbed. (C) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据