4.5 Article

Matrix accumulation by articular chondrocytes during mechanical stimulation is influenced by integrin-mediated cell spreading

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.32706

关键词

chondrocyte; mechanical loading; integrins; proteoglycans

资金

  1. Natural Science and Engineering Research Council of Canada (NSERC)
  2. Canadian Institutes of Health Research (CIHR)

向作者/读者索取更多资源

We have shown previously that cyclic compression of newly forming bioengineered cartilage in vitro results in improved tissue formation via changes in expression of matrix metalloproteases, such as, MT1-MMP (membrane type metalloprotease), and increased synthesis of matrix molecules. Several studies have suggested an association between MT1-MMP and integrins, which are known to influence cell shape. Thus, the objectives of this study were to determine the effect of compressive mechanical stimulation on cell shape and the role of integrins and MT1-MMP in mediating these changes and influencing matrix accumulation. Bovine articular chondrocytes were grown on the surface of a porous ceramic substrate for 72 h and then cyclically compressed for 30 min. Scanning electron microscopy and morphometric analysis demonstrated that compression induced a rapid, transient increase in chondrocyte spreading by 10 min, followed by a retraction to prestimulated size within 6 h. This was associated with increased accumulation of newly synthesized proteoglycans, as determined by quantification of radioisotope incorporation. Blocking the alpha 5 beta 1 integrin, or its beta 1 subunit, inhibited cell spreading and resulted in a partial inhibition of compression-induced increase in matrix accumulation. Knockdown of MT1-MMP expression partially inhibited cell retraction and resulted in a reduced matrix accumulation as well. These results suggest that chondrocyte spreading and retraction following cyclic compression in vitro regulates matrix accumulation. Understanding the mechanisms that regulate chondrocyte mechanotransduction may ultimately lead to the design of improved repair tissue for cartilage damage. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res 94A: 122-129, 2010

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据