4.5 Article

Interactions of coronary artery smooth muscle cells with 3D porous polyurethane scaffolds

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.31972

关键词

polyurethane scaffold; vascular grafts; smooth muscle cell; cell adhesion; cell proliferation; cell spreading

资金

  1. The Natural Sciences and Engineering Research Council of Canada (NSERC)

向作者/读者索取更多资源

One strategy in vascular tissue engineering is the design of hybrid vascular substitutes where vascular cells infiltrate biostable porous scaffolds that provides favorable environment for guided cell repopulation and acts as a mechanically supporting layer after the tissue regeneration process. The aim of the present work was to study the interaction of human coronary artery smooth muscle cells (HCASMC) with 3D porous polyurethane scaffolds. We therefore fabricated porous and highly interconnected 3D polyurethane scaffolds that can promote HCASMC attachment, proliferation, and migration. SEM and microCT studies of the fabricated scaffolds showed that the current scaffolds had highly open and interconnected pore structures, with an average porosity of 84%. HCASMC interaction on polyurethane films revealed that cells adhere and express specific marker proteins (vinculin and h-caldesmon). This expression was further enhanced by coating the polyurethane with Matrigel. On uncoated 3D scaffolds, dense spherical aggregates of cells were often encountered with little adhesion of individual cells alongside the struts of the scaffold, independent of the porogens used. In contrast, when Cultured on Matrigel-coated scaffolds, cell numbers quickly increased after 14 days and spread along the entire scaffold. At the upper scaffold surface, elongated cells were seen adhering to one another and also to the scaffold surface. These cells were elongated, aligned in parallel and contained abundant F-actin bundles suggesting a differentiated contractile phenotype. Deep into the scaffold, cells were encountered that formed actin-rich lamellipodial extensions spreading along the strut and lacked stress fibers, suggesting active cell migration along the Substrate. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 89A: 293-303, 2009

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据