4.5 Article

β-CaSiO3/β-Ca3(PO4)2 composite materials for hard tissue repair:: In vitro studies

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.31390

关键词

bioactive material; composite; degradation; cell proliferation; in vitro

向作者/读者索取更多资源

In this study, a series of beta-CaSiO3 (CS)/beta-Ca-3(PO4)(2) (TCP) composites with different ratios were prepared to produce new bioactive and biodegradable biomaterials for potential bone repair. The mechanical properties of CS-TCP composites increased steadily with the increase of TCP amounts in composites. Formation of bone-like apatite on a range of CS-TCP composites with CS weight percentage ranging from 0 to 100 has been investigated in simulated body fluid (SBF). The presence of bone-like apatite layer on the composite surface after soaking in SBF was demonstrated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and fourier transform infrared reflection spectroscopy (FTIR). The results showed that the apatite formation ability of the CS-TCP composite was enhanced with increasing CS content in the composites. For composites with more than 50% CS contents, the samples were completely covered by a layer of dense bone-like apatite just after 3 days immersion. Dissolution tests in Tris-HCl buffer solution showed obvious differences with different CS contents in composites. The dissolution rate increased with the increase of CS content, which suggested that the solubility of biphasic composites could be tailored by adjusting the initial CS/TCP ratio. In vitro cell experiments showed that higher content of CS phase in composites promoted cell proliferation and differentiation. When the CS amount in the composite increased to 50%, the proliferation rate and ALP activities of osteoblast-like cells showed significant difference compared with pure TCP (p < 0.05). Results of the study suggested that the CS-TCP composites with more than 50% CS content might be promising bone repair materials. (c) 2007 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据