4.5 Article

Flow of a blood analogue fluid in a compliant abdominal aortic aneurysm model: Experimental modelling

期刊

JOURNAL OF BIOMECHANICS
卷 47, 期 6, 页码 1262-1269

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2014.02.026

关键词

Shear thinning fluid; Compliant abdominal aortic aneurysm; In vitro dynamic set-up; Physiological flow; Experimental modelling

向作者/读者索取更多资源

The aim of this work is to develop a unique in vitro set-up in order to analyse the influence of the shear thinning fluid-properties on the flow dynamics within the bulge of an abdominal aortic aneurysm (AAA). From an experimental point of view, the goals are to elaborate an analogue shear thinning fluid mimicking the macroscopic blood behaviour, to characterise its rheology at low shear rates and to propose an experimental device able to manage such an analogue fluid without altering its feature while reproducing physiological flow rate and pressure, through compliant AAA. Once these experimental prerequisites achieved, the results obtained in the present work show that the flow dynamics is highly dependent on the fluid rheology. The main results point out that the propagation of the vortex ring, generated in the AAA bulge, is slower for shear thinning fluids inducing a smaller travelled, distance by the vortex ring so that it never impacts the anterior wall in the distal region, in opposition to Newtonian fluids. Moreover, scalar shear rate values are globally lower for shear thinning fluids inducing higher maximum stress values than those for the Newtonian fluids. Consequently, this work highlights that a Newtonian fluid model is finally inadequate to obtain a reliable prediction of the flow dynamics within MA. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据