4.5 Article

A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions

期刊

JOURNAL OF BIOMECHANICS
卷 46, 期 16, 页码 2802-2808

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2013.09.004

关键词

Cerebral aneurysms; Computational fluid dynamics; Wall shear stress; Non-Newtonian fluid; Boundary conditions

资金

  1. Research Council of Norway [209951]
  2. Center of Excellence grant

向作者/读者索取更多资源

Recent computational fluid dynamics (CFD) studies relate abnormal blood flow to rupture of cerebral aneurysms. However, it is still debated how to model blood flow with sufficient accuracy. Common assumptions made include Newtonian behaviour of blood, traction free outlet boundary conditions and inlet boundary conditions based on available literature. These assumptions are often required since the available patient specific data is usually restricted to the geometry of the aneurysm and the surrounding vasculature. However, the consequences of these assumptions have so far been inadequately addressed. This study investigates the effects of 4 different viscosity models, 2 different inflow conditions and 2 different outflow conditions in 12 middle cerebral artery aneurysms. The differences are quantified in terms of 3 different wall shear stress (WSS) metrics, involving maximal WSS, average WSS, and proportion of aneurysm sac area with low WSS. The results were compared with common geometrical metrics such as volume, aspect ratio, size ratio and parent vessel diameter and classifications in terms of sex and aneurysm type. The results demonstrate strong correlations between the different viscosity models and boundary conditions. The correlation between the different WSS metrics range from weak to medium. No strong correlations were found between the different WSS metrics and the geometrical metrics or classifications. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据