4.5 Article

Cell and tissue deformation measurements: Texture correlation with third-order approximation of displacement gradients

期刊

JOURNAL OF BIOMECHANICS
卷 46, 期 14, 页码 2490-2496

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2013.07.035

关键词

Texture correlation; Digital image correlation; Digital volume correlation; Cell and tissue mechanics; Subset entropy

资金

  1. Purdue University
  2. Andrews Fellowship

向作者/读者索取更多资源

Cells remarkably are capable of large deformations during motility and when subjected to mechanical force. Measurement of mechanical deformation (i.e. displacements, strain) is critical to understand functional changes in cells and biological tissues following disease, and to elucidate basic relationships between applied force and cellular biosynthesis. Microscopy-based imaging modalities provide the ability to noninvasively visualize small cell or tissue structures and track their motion over time, often using two-dimensional (2D) digital image (texture) correlation algorithms. For the measurement of complex and nonlinear motion in cells and tissues, implementation of texture correlation algorithms with high order approximations of displacement mapping terms are needed to minimize error. Here, we extend a texture correlation algorithm with up to third-order approximation of displacement mapping terms for the measurement of cell and tissue deformation. We additionally investigate relationships between measurement error and image texture, defined by subset entropy. Displacement measurement error is significantly reduced when the order of displacement mapping terms in the texture correlation algorithm matches or exceeds the order of the deformation observed. Displacement measurement error is also inversely proportional to subset entropy, with well-defined cell and tissue structures leading to high entropy and low error. For cell and tissue studies where complex or nonlinear displacements are expected, texture correlation algorithms with high order terms are required to best characterize the observed deformation. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据