4.5 Article

Parallel-plate fluid flow systems for bone cell stimulation

期刊

JOURNAL OF BIOMECHANICS
卷 43, 期 6, 页码 1182-1189

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2009.11.029

关键词

Pressure; Fluid flow; Shear stress; Bone

资金

  1. Nuffield Foundation

向作者/读者索取更多资源

Bone responds to changes in its mechanical environment, but the mechanisms by which it does so are poorly understood. One hypothesis of mechanosensing in bone states that osteocytes can sense the flow of fluid through the canalicular system. To study this in vitro a number of fluid flow devices have been designed in which cells are placed between parallel plates in sealed chambers. Fluid flows through the chambers at controlled rates, most commonly driven by a peristaltic pump. In addition to fluid flow, high pressures have been observed in these chambers, but the effect of this on the cellular responses has generally been ignored or considered irrelevant, something challenged by recent cellular experiments using pressure only. We have, therefore, devised a system in which we can considerably reduce the pressure while maintaining the flow rate to enable study of their effects individually and in combination. As reducing pressure also reduces the risk of leaks in flow chambers, our system is suitable for real-time microscopical experiments. We present details of the new systems and of experiments with osteoblasts to illustrate the effects of fluid flow with and without additional pressure on the translocation of beta-catenin to the nucleus. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据