4.2 Article

Multiscale Design and Multiobjective Optimization of Orthopedic Hip Implants with Functionally Graded Cellular Material

出版社

ASME
DOI: 10.1115/1.4006115

关键词

total hip replacement; cellular microstructure; lattice material; finite element method; asymptotic homogenization; multiobjective optimization

向作者/读者索取更多资源

Revision surgeries of total hip arthroplasty are often caused by a deficient structural compatibility of the implant. Two main culprits, among others, are bone-implant interface instability and bone resorption. To address these issues, in this paper we propose a novel type of implant, which, in contrast to current hip replacement implants made of either a fully solid or a foam material, consists of a lattice microstructure with nonhomogeneous distribution of material properties. A methodology based on multiscale mechanics and design optimization is introduced to synthesize a graded cellular implant that can minimize concurrently bone resorption and implant interface failure. The procedure is applied to the design of a 2D left implanted femur with optimized gradients of relative density. To assess the manufacturability of the graded cellular microstructure, a proof-of-concept is fabricated by using rapid prototyping. The results from the analysis are used to compare the optimized cellular implant with a fully dense titanium implant and a homogeneous foam implant with a relative density of 50%. The bone resorption and the maximum value of interface stress of the cellular implant are found to be over 70% and 50% less than the titanium implant while being 53% and 65% less than the foam implant. [DOI: 10.1115/1.4006115]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据