4.5 Article

Poly(ester anhydride)/mPEG Amphiphilic Block Co-polymer Nanoparticles as Delivery Devices for Paclitaxel

期刊

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1163/092050610X490158

关键词

Amphiphilic block co-polymers; nanoparticles; polyanhydride; in vitro release; in vitro cytotoxicity

资金

  1. 973 Program [2009CB930300]
  2. National Grand Program on Key Infectious Disease Control [2008ZX10001-015-10]
  3. Tianjin Municipal Natural Science Foundation [08JCZDJC17200, 08JCYBJC01800]

向作者/读者索取更多资源

This work focused on the preparation and characterization of a novel amphiphilic block co-polymer and paclitaxel-loaded co-polymer nanoparticles (NPs) and in vitro evaluation of the release of paclitaxel and cytotoxicity of NPs. mPEG-b-P(OA-DLLA)-b-mPEG was prepared via melt polycondensation of methoxy poly(ethylene glycol) (mPEG), octadecanedioic acid (OA) and D, L-lactic acid (DLLA) and characterized by FT-IR, H-1-NMR, C-13-NMR, GPC, DSC and XRD. The paclitaxel-loaded mPEG-b-P(OA-DLLA)-b-mPEG NPs were prepared by nanoprecipitation and then characterized by LPSA, TEM and H-1-NMR. In vitro release behaviors of the paclitaxel-loaded NPs were investigated by HPLC. In vitro cytotoxicity of NPs was evaluated by MTT assay with normal mouse lung fibroblast cells (L929) as model cells. The composition of mPEG-b-P(OA-DLLA)-b-mPEG is consistent with that of the designed co-polymer. The paclitaxel-loaded NPs are of spherical shape with core/shell structure and size smaller than 300 nm. Paclitaxel can be continuously released from the paclitaxel-loaded NPs and the in vitro release rate of paclitaxel decreases with increasing the content of the P(OA-DLLA) segments in the co-polymer. The mPEG-b-P(OA-DLLA)-b-mPEG NPs are non-toxic to L929. The results suggest that mPEG-b-P(OA-DLLA)-b-mPEG NPs are a potential candidate carrier material for the controlled delivery of paclitaxel and other hydrophobic compounds. (C) Koninklijke Brill NV, Leiden, 2011

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Engineering, Biomedical

Characterization of gelatin-based wound dressing biomaterials containing increasing coconut oil concentrations

Mehlika Karamanlioglu, Serap Yesilkir-Baydar

Summary: This study determined the influence and ideal ratios of different amounts of coconut oil in gelatin-based films as wound dressings. Increasing coconut oil content improved the mechanical properties, thermal stability, cell viability, and wound healing ability of the films. CO-2 and CO-4 showed the best performance among the samples.

JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION (2024)

Article Engineering, Biomedical

Cell culture design for homogeneous proliferation of cells in three-dimensional nonwoven polymer scaffolds

Yu-Min Chen, Chihoko Tokoda, Yasuhiko Tabata

Summary: The objective of this study is to establish strategies to uniformly proliferate cells in a three-dimensional nonwoven PET/EVOH scaffold by simple adjustments in seeding and culture methods and the scaffold design. The combination of dynamic and static seeding methods resulted in the highest seeding efficiency. Stirring culture allowed cells to proliferate to a greater extent, while opening holes in the scaffold improved cell distribution. Two 1-mm holes were found to be optimal for homogeneous cell proliferation. Different cell types showed similar behavior in the scaffold, indicating the applicability of the established procedure. The nonwoven PET/EVOH scaffold serves as a potential cell culture substrate for efficient cell proliferation.

JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION (2024)

Article Engineering, Biomedical

Development of kojic acid loaded collagen-chitosan nanoparticle as skin lightener product: in vitro and in vivo assessment

Majid Saeedi, Katayoun Morteza-Semnani, Jafar Akbari, Seyyed Mobin Rahimnia, Fatemeh Ahmadi, Hanieh Choubdari, Amir Lotfi, Seyyed Mohammad Hassan Hashemi

Summary: In this study, kojic acid loaded chitosan/collagen nanoparticles were produced using an ionic gelation and ultrasonic approach to enhance dermal delivery and anti-pigmentation effects. Increasing the amount of collagen in the nanoparticles led to larger particle size and higher entrapment efficiency of kojic acid. The nanoparticles were found to be spherical in shape and kojic acid was in an amorphous form. Skin permeability tests showed that the nanoparticles delivered more kojic acid to the dermal layers compared to plain gel. The nanoparticles were non-toxic and non-irritating, and exhibited stronger inhibition of melanin formation compared to free kojic acid. These findings suggest that the produced nanoparticles have potential as a nano-vehicle for dermal administration of kojic acid, providing new options for managing hyper-melanogenesis problems.

JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION (2024)

Article Engineering, Biomedical

The role of chitosan in enhancing the solubility and antibacterial activity of emodin against drug-resistant bacteria

Hue Thi Nguyen, Anh-Tuan Le, Thanh Thuy Nguyen, Tran Quang Huy, Thuy Thi Thu Nguyen

Summary: In this study, a chitosan and emodin formulation was prepared to enhance the solubility of emodin and exhibited synergic antibacterial activity against drug-resistant bacterial strains. The enhanced solubility of the formulation suggests its potential as a candidate for the treatment of infectious diseases caused by drug-resistant bacterial pathogens.

JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION (2024)

Article Engineering, Biomedical

Synthesis, characterization, and antibacterial activity of chitosan-chelated silver nanoparticles

Jiu Ge, Mengting Li, Jiahui Fan, Christian Celia, Yijun Xie, Qing Chang, Xiaoyong Deng

Summary: Bacterial infections pose a significant threat to human health, and the emergence of multidrug-resistant bacteria has reduced the effectiveness of antibacterial treatments. In this study, chitosan/silver nanoparticle complexes were developed to inhibit bacterial proliferation and induce membrane damage. The results demonstrated that increasing the chitosan concentration enhanced the antibacterial impact, and the nanoparticles showed broad-spectrum antimicrobial activity. The study provides valuable insights into the development of nano-antibacterial agents as a potential substitute for traditional antibiotics in medical applications.

JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION (2024)