4.5 Article

Synthesis, Characterization and Cell Compatibility of Novel Poly(ester urethane)s Based on Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Prepared by Melting Polymerization

期刊

JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION
卷 20, 期 10, 页码 1451-1471

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1163/092050609X12457419007621

关键词

PHB; PHBHHx; poly(ester urethane); melting polymerization; biocompatibility; smooth muscle cell; keratinocytes; blood coagulation behavior

资金

  1. Li Ka Shing Foundation and National High Tech 863 [2006AA02Z242, 2006AA020104]
  2. State Basic Science Foundation 973 [2007CB707804]

向作者/读者索取更多资源

Novel tailor-made poly(ester urethane)s (PUs) based on microbial polyesters poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) were synthesized by melting polymerization (MP) using 1,6-hexamethylene diisocyanate (HDI) as a coupling agent. A comprehensive characterization using H-1-NMR, Fourier transform infrared spectroscopy (FT-IR), gelpermeation chromatography (GPC), differential scanning calorimetry (DSC), mechanical properties, static water contact angles, cell proliferation using smooth muscle cells from rabbit aorta (RaSMCs) and immortalized human keratinocytes (HaCat), and blood coagulation behavior were conducted on the synthesized PUs films. DSC showed that PU samples had a low degree of crystallinity at room temperature and became fully amorphous after a melt-quenched process. The series of tailor-made PUs based on different mass ratios of P3HB4HB and PHBHHx revealed a ductile and flexile mechanical property especially for PHBHHx-rich PU, or a hydrophobic property for 4HB-rich PU. A 4 days incubation experiment showed that all PU films had a better cell proliferation than poly(lactic acid) (PLA), polyhydroxybutyrate (PHB), P3HB4HB and PHBHHx. RaSMCs cultured on PU films had a quiescent contractile phenotype, indicating that they were fully functional. HaCat incubated on tailor-made PU films showed a proliferation approximately equal to tissue-culture plates (TCPs). Blood coagulation behavior tests revealed a strong platelet adhesion and a short coagulation time on PU films. This study demonstrated potential medical applications for P3HB4HB and PHBHHx based polyurethane as a hydrophobic wound-healing and hemostatic materials. (C) Koninklijke Brill NV, Leiden, 2009

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据