4.4 Article

Structural Characteristics of Small Intestinal Submucosa Constructs Dictate In Vivo Incorporation and Angiogenic Response

期刊

JOURNAL OF BIOMATERIALS APPLICATIONS
卷 26, 期 8, 页码 1013-1033

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0885328210391688

关键词

biomaterial; extracellular matrix; angiogenesis; degradable; small intestinal submucosa

资金

  1. Cook Biotech Incorporated

向作者/读者索取更多资源

The rate of angiogenesis and cellular infiltration into degradable biomaterials determines scaffold persistence in vivo. The ability to tune the degradation properties of naturally derived biomaterials has been a popular goal in tissue engineering, yet has often depended on chemical crosslinking. Small intestinal submucosa (SIS) is a naturally derived, collagen-based, bioactive scaffold that has broad clinical success in many therapeutic applications. Two methods for producing multilayer, non-crosslinked SIS constructs were compared in vitro and in vivo. Traditional and cryo SEM, mercury intrusion porosimetry, and a novel enzymatic degradation assay determined that lyophilization produced an open, porous scaffold, in contrast to the collapsed, denser structure of SIS constructs produced using a vacuum press process. The angiogenic responses to lyophilized and vacuum-pressed SIS constructs were evaluated in vivo using a subcutaneous implant assay in mice. Explanted samples were compared after 7 and 21 days using fluorescence microangiography and light microscopy. Capacity of the implant neovasculature was also determined. These experiments revealed that the lyophilized SIS was infiltrated and vascularized more rapidly than the vacuum pressed. These data demonstrate the tunable incorporation of a non-crosslinked ECM-based biomaterial, which may have implications for the persistence of this degradable scaffold in tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据