4.4 Article

Biomimetic oxidative treatment of spruce wood studied by pyrolysis-molecular beam mass spectrometry coupled with multivariate analysis and 13C-labeled tetramethylammonium hydroxide thermochemolysis: implications for fungal degradation of wood

期刊

JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY
卷 14, 期 8, 页码 1253-1263

出版社

SPRINGER
DOI: 10.1007/s00775-009-0569-6

关键词

Pyrolysis-molecular beam mass spectrometry; Principal components analysis; C-13-tetramethylammonium hydroxide; Lignin; Demethoxylation

资金

  1. Purdue University
  2. Wood Science and Technology Laboratories [5192/06-4]

向作者/读者索取更多资源

In this work, pyrolysis-molecular beam mass spectrometry analysis coupled with principal components analysis and C-13-labeled tetramethylammonium hydroxide thermochemolysis were used to study lignin oxidation, depolymerization, and demethylation of spruce wood treated by biomimetic oxidative systems. Neat Fenton and chelator-mediated Fenton reaction (CMFR) systems as well as cellulosic enzyme treatments were used to mimic the nonenzymatic process involved in wood brown-rot biodegradation. The results suggest that compared with enzymatic processes, Fenton-based treatment more readily opens the structure of the lignocellulosic matrix, freeing cellulose fibrils from the matrix. The results demonstrate that, under the current treatment conditions, Fenton and CMFR treatment cause limited demethoxylation of lignin in the insoluble wood residue. However, analysis of a water-extractable fraction revealed considerable soluble lignin residue structures that had undergone side chain oxidation as well as demethoxylation upon CMFR treatment. This research has implications for our understanding of nonenzymatic degradation of wood and the diffusion of CMFR agents in the wood cell wall during fungal degradation processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据