4.6 Article

Magnesium Modulates Actin Binding and ADP Release in Myosin Motors

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 289, 期 34, 页码 23977-23991

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M114.562231

关键词

Actin; Contractile Protein; Enzyme Kinetics; Magnesium; Muscle; Myosin

资金

  1. National Institutes of Health [R01 EY016419, R01 HL086902]
  2. Pennsylvania Department of Health
  3. National Science Foundation [EPS-1101317]
  4. European Research Council [Ideas 208319]

向作者/读者索取更多资源

Background: Magnesium may be an important physiological regulator of myosin motor activity. Results: Mg2+ inhibits the ADP release rate constant in the subset of myosins examined and reduces actin affinity in the post-hydrolysis state in myosin V. Conclusion: Mg2+ alters contractile velocity without altering overall tension-generating capacity. Significance: Mg2+-dependent regulation of motor activity is conserved in myosin motors. We examined the magnesium dependence of five class II myosins, including fast skeletal muscle myosin, smooth muscle myosin, -cardiac myosin (CMIIB), Dictyostelium myosin II (DdMII), and nonmuscle myosin IIA, as well as myosin V. We found that the myosins examined are inhibited in a Mg2+-dependent manner (0.3-9.0 mm free Mg2+) in both ATPase and motility assays, under conditions in which the ionic strength was held constant. We found that the ADP release rate constant is reduced by Mg2+ in myosin V, smooth muscle myosin, nonmuscle myosin IIA, CMIIB, and DdMII, although the ADP affinity is fairly insensitive to Mg2+ in fast skeletal muscle myosin, CMIIB, and DdMII. Single tryptophan probes in the switch I (Trp-239) and switch II (Trp-501) region of DdMII demonstrate these conserved regions of the active site are sensitive to Mg2+ coordination. Cardiac muscle fiber mechanic studies demonstrate cross-bridge attachment time is increased at higher Mg2+ concentrations, demonstrating that the ADP release rate constant is slowed by Mg2+ in the context of an activated muscle fiber. Direct measurements of phosphate release in myosin V demonstrate that Mg2+ reduces actin affinity in the MADPP(i) state, although it does not change the rate of phosphate release. Therefore, the Mg2+ inhibition of the actin-activated ATPase activity observed in class II myosins is likely the result of Mg2+-dependent alterations in actin binding. Overall, our results suggest that Mg2+ reduces the ADP release rate constant and rate of attachment to actin in both high and low duty ratio myosins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据