4.6 Article

Disintegration of Nascent Replication Bubbles during Thymine Starvation Triggers RecA- and RecBCD-dependent Replication Origin Destruction

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 287, 期 28, 页码 23958-23970

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M112.359687

关键词

-

资金

  1. National Institutes of Health Grant [GM 073115]

向作者/读者索取更多资源

Thymineless death strikes cells unable to synthesize DNA precursor dTTP, with the nature of chromosomal damage still unclear. Thymine starvation stalls replication forks, whereas accumulating evidence indicates the replication origin is also affected. Using a novel DNA labeling technique, here we show that replication slowly continues in thymine-starved cells, but the newly synthesized DNA becomes fragmented and degraded. This degradation apparently releases enough thymine to sustain initiation of new replication bubbles from the chromosomal origin, which destabilizes the origin in a RecA-dependent manner. Marker frequency analysis with gene arrays 1) reveals destruction of the origin-centered chromosomal segment in RecA(+) cells; 2) confirms origin accumulation in the recA mutants; and 3) identifies the sites around the origin where destruction initiates in the recBCD mutants. We propose that thymineless cells convert persistent single-strand gaps behind replication forks into double-strand breaks, using the released thymine for new initiations, whereas subsequent disintegration of small replication bubbles causes replication origin destruction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据