4.6 Article

Sts-2 Is a Phosphatase That Negatively Regulates Zeta-associated Protein (ZAP)-70 and T Cell Receptor Signaling Pathways

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 286, 期 18, 页码 -

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110.177634

关键词

-

资金

  1. National Institutes of Health, NIAID [R21AI075176, R01AI080892, CA-115611]
  2. Stony Brook University [LI07]
  3. Arthritis Foundation
  4. Department of Defense [NF060060]

向作者/读者索取更多资源

T cell activity is controlled in large part by the T cell receptor (TCR). The TCR detects the presence of foreign pathogens and activates the T cell-mediated immune reaction. Numerous intracellular signaling pathways downstream of the TCR are involved in the process of T cell activation. Negative regulation of these pathways helps prevent excessive and deleterious T cell responses. Two homologous proteins, Sts-1 and Sts-2, have been shown to function as critical negative regulators of TCR signaling. The phosphoglycerate mutase-like domain of Sts-1 (Sts-1(PGM)) has a potent phosphatase activity that contributes to the suppression of TCR signaling. The function of Sts-2(PGM) as a phosphatase has been less clear, principally because its intrinsic enzyme activity has been difficult to detect. Here, we demonstrate that Sts-2 regulates the level of tyrosine phosphorylation on targets within T cells, among them the critical T cell tyrosine kinase Zap-70. Utilizing new phosphorylated substrates, we demonstrate that Sts-2(PGM) has clear, albeit weak, phosphatase activity. We further pinpoint Sts-2 residues Glu-481, Ser-552, and Ser-582 as specificity determinants, in that an Sts-2(PGM) triple mutant in which these three amino acids are altered to their counterparts in Sts-1(PGM) has substantially increased activity. Our results suggest that the phosphatase activities of both suppressor of TCR signaling homologues cooperate in a similar but independent fashion to help set the threshold for TCR-induced T cell activation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据