4.6 Article

The Lipid A from Vibrio fischeri Lipopolysaccharide A UNIQUE STRUCTURE BEARING A PHOSPHOGLYCEROL MOIETY

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 286, 期 24, 页码 21203-21219

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.239475

关键词

-

资金

  1. National Institutes of Health [AI-50661]
  2. Sandler Family Foundation
  3. Gordon and Betty Moore Foundation
  4. National Institutes of Health, NCI, Cancer Center [P30 CA082103, DE-AC02-05CH11231]

向作者/读者索取更多资源

Vibrio fischeri, a bioluminescent marine bacterium, exists in an exclusive symbiotic relationship with the Hawaiian bobtail squid, Euprymna scolopes, whose light organ it colonizes. Previously, it has been shown that the lipopolysaccharide (LPS) or free lipid A of V. fischeri can trigger morphological changes in the juvenile squid's light organ that occur upon colonization. To investigate the structural features that might be responsible for this phenomenon, the lipid A from V. fischeri ES114 LPS was isolated and characterized by multistage mass spectrometry (MSn). A microheterogeneous mixture of mono- and diphosphorylated diglucosamine disaccharides was observed with variable states of acylation ranging from tetra- to octaacylated forms. All lipid A species, however, contained a set of conserved primary acyl chains consisting of an N-linked C14:0(3-OH) at the 2-position, an unusual N-linked C14:1(3-OH) at the 2'-position, and two O-linked C12:0(3-OH) fatty acids at the 3- and 3'-positions. The fatty acids found in secondary acylation were considerably more variable, with either a C12:0 or C16:1 at the 2-position, C14:0 or C14:0(3-OH) at the 2'-position, and C12:0 or no substituent at the 3'-position. Most surprising was the presence of an unusual set of modifications at the secondary acylation site of the 3-position consisting of phosphoglycerol (GroP), lysophosphatidic acid (GroP bearing C12:0, C16:0, or C16:1), or phosphatidic acid (GroP bearing either C16:0 + C12:0 or C16:0 + C16:1). Given their unusual nature, it is possible that these features of the V. fischeri lipid A may underlie the ability of E. scolopes to recognize its symbiotic partner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据