4.6 Article

Contribution of Retinoid X Receptor Signaling to the Specification of Skeletal Muscle Lineage

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 286, 期 30, 页码 26806-26812

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.227058

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. Canadian Institutes of Health Research

向作者/读者索取更多资源

Pluripotent stem cells possess a tremendous potential for the treatment of many diseases because of their capacity to differentiate into a variety of cell lineages. However, they provide little promise for muscle-related diseases, mainly because of the lack of small molecule inducers to efficiently direct myogenic conversion. Retinoic acid, acting through the retinoic acid receptor (RAR) and retinoid X receptor (RXR), affects stem cell fate determination in a concentration-dependent manner, but it only has a modest efficacy on the commitment of ES cells into skeletal muscle lineage. The RXR is very important for embryonic development but is generally considered to act as a silent partner of RAR in a non-permissive mode. In this study, we have examined whether activation of the RXR by rexinoid or RXR-specific signaling play a role in the specification of stem cells into muscle lineage. Our findings demonstrate that mouse ES cells generate skeletal myocytes effectively upon treatment with rexinoid at the early stage of differentiation and that on a molecular level, rexinoid-enhanced myogenesis simulates the sequential events observed in vivo. Moreover, RXR-mediated myogenic conversion requires the function of beta-catenin but not RAR. Our studies establish the feasibility of applying the RXR agonist in cell-based therapies to treat muscle-related diseases. The aptitude of mouse ES cells to generate skeletal myocytes following rexinoid induction also provides a model system to study the convergence of different signaling pathways in myogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据