4.6 Article

The Eleven-Nineteen Lysine-rich Leukemia Gene (ELL2) Influences the Histone H3 Protein Modifications Accompanying the Shift to Secretory Immunoglobulin Heavy Chain mRNA Production

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 286, 期 39, 页码 33795-33803

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.272096

关键词

-

资金

  1. National Science Foundation [MCB-0842725]
  2. National Institutes of Health [5T32 CA82084-12]
  3. Summer Undergraduate and Office of Research programs at the University of Pittsburgh, School of Medicine
  4. Div Of Molecular and Cellular Bioscience
  5. Direct For Biological Sciences [0842725] Funding Source: National Science Foundation

向作者/读者索取更多资源

In plasma cells, immunoglobulin heavy chain (IgH) secretory-specific mRNA is made in high abundance as a result of both increased promoter proximal poly(A) site choice and weak splice-site skipping. Ell2, the eleven-nineteen lysine rich leukemia gene, is a transcription elongation factor that is induced similar to 6-fold in plasma cells and has been shown to drive secretory-specific mRNA production. Reducing ELL2 by siRNA, which reduced processing to the secretion-specific poly(A) site, also influenced the methylations of histone H3K4 and H3K79 on the IgH gene and impacted positive transcription factor b (pTEFb), Ser-2 carboxyl-terminal phosphorylation, and polyadenylation factor additions to RNA polymerase II. The multiple lineage leukemia gene (MLL) and Dot1L associations with the IgH gene were also impaired in the absence of ELL2. To investigate the link between histone modifications, transcription elongation, and alternative RNA processing in IgH mRNA production, we performed chromatin immunoprecipitation on cultured mouse B and plasma cells bearing the identical IgH gamma 2a gene. In the plasma cells, as compared with the B cells, the H3K4 and H3K79 methylations extended farther downstream, past the IgH enhancer to the end of the transcribed region. Thus the downstream H3K4 and H3K79 methylation of the IgH associated chromatin in plasma cells is associated with increased polyadenylation and exon skipping, resulting from the actions of ELL2 transcription elongation factor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据