4.6 Article

MYST Family Lysine Acetyltransferase Facilitates Ataxia Telangiectasia Mutated (ATM) Kinase-mediated DNA Damage Response in Toxoplasma gondii

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 285, 期 15, 页码 11154-11161

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.066134

关键词

-

资金

  1. National Institutes of Health, NIAID [R21AI083732]
  2. American Heart Association [0725725Z]
  3. Swiss National Foundation [PBBSA-115870]

向作者/读者索取更多资源

The MYST family of lysine acetyltransferases (KATs) function in a wide variety of cellular operations, including gene regulation and the DNA damage response. Here we report the characterization of the second MYST family KAT in the protozoan parasite Toxoplasma gondii (TgMYST-B). Toxoplasma causes birth defects and is an opportunistic pathogen in the immuno-compromised, the latter due to its ability to convert into a latent cyst (bradyzoite). We demonstrate that TgMYST-B can gain access to the parasite nucleus and acetylate histones. Overexpression of recombinant, tagged TgMYST-B reduces growth rate in vitro and confers protection from a DNA-alkylating agent. Expression of mutant TgMYST-B produced no growth defect and failed to protect against DNA damage. We demonstrate that cells overexpressing TgMYST-B have increased levels of ataxia telangiectasia mutated (ATM) kinase and phosphorylated H2AX and that TgMYST-B localizes to the ATM kinase gene. Pharmacological inhibitors of ATM kinase or KATs reverse the slow growth phenotype seen in parasites overexpressing TgMYST-B. These studies are the first to show that a MYST KAT contributes to ATM kinase gene expression, further illuminating the mechanism of how ATM kinase is up-regulated to respond to DNA damage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据