4.6 Article

Functional Identification of Toxin-Antitoxin Molecules from Helicobacter pylori 26695 and Structural Elucidation of the Molecular Interactions

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 286, 期 6, 页码 4842-4853

出版社

ELSEVIER
DOI: 10.1074/jbc.M109.097840

关键词

-

资金

  1. Korean government (Ministry of Education, Science and Technology (MEST) [20100001707]
  2. New Drug Target [3700-20070095]
  3. Ministry for Health, Welfare and Family Affairs, Republic of Korea [A084420, A092006]
  4. Brain Korea 21 Project for Medicine, Dentistry, and Pharmacy
  5. Korea Health Promotion Institute [A092006, A084420] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  6. National Research Foundation of Korea [2007-2003848, 2007-0057059] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Bacterial toxin-antitoxin (TA) systems are associated with many important cellular processes including antibiotic resistance and microorganism virulence. Here, we identify and structurally characterize TA molecules from the gastric pathogen, Helicobacter pylori. The HP0894 protein had been previously suggested, through our structural genomics approach, to be a putative toxin molecule. In this study, the intrinsic RNase activity and the bacterial cell growth-arresting activity of HP0894 were established. The RNA-binding surface was identified at three residue clusters: (Lys(8) and Ser(9)), (Lys(50)-Lys(54) and Glu(58)), and (Arg(80) and His(84)-Phe(88)). In particular, the -UA- and -CA- sequences in RNA were preferentially cleaved by HP0894, and residues Lys(52), Trp(53), and Ser(85)-Lys(87) were observed to be the main contributors to sequence recognition. The action of HP0894 could be inhibited by the HP0895 protein, and the HP0894-HP0895 complex formed an oligomer with a binding stoichiometry of 1:1. The N and C termini of HP0894 constituted the binding sites to HP0895. In contrast, the unstructured C-terminal region of HP0895 was responsible for binding to HP0894 and underwent a conformational change in the process. Finally, DNA binding activity was observed for both HP0895 and the HP0894-0895 complex but not for HP0894 alone. Taken together, it is concluded that the HP0894-HP0895 protein couple is a TA system in H. pylori, where HP0894 is a toxin with an RNase function, whereas HP0895 is an antitoxin functioning by binding to both the toxin and DNA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据