4.6 Article

Human ISCA1 Interacts with IOP1/NARFL and Functions in Both Cytosolic and Mitochondrial Iron-Sulfur Protein Biogenesis

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 51, 页码 35297-35307

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.040014

关键词

-

资金

  1. National Institutes of Health [R01-GM71459]

向作者/读者索取更多资源

Iron-sulfur proteins play an essential role in many biologic processes. Hence, understanding their assembly is an important goal. In Escherichia coli, the protein IscA is a product of the isc (iron-sulfur cluster) operon and functions in the iron-sulfur cluster assembly pathway in this organism. IscA is conserved in evolution, but its function in mammalian cells is not known. Here, we provide evidence for a role for a human homologue of IscA, named IscA1, in iron-sulfur protein biogenesis. We observe that small interfering RNA knockdown of IscA1 in HeLa cells leads to decreased activity of two mitochondrial iron-sulfur enzymes, succinate dehydrogenase and mitochondrial aconitase, as well as a cytosolic iron-sulfur enzyme, cytosolic aconitase. IscA1 is observed both in cytosolic and mitochondrial fractions. We find that IscA1 interacts with IOP1 (iron-only hydrogenase-like protein 1)/NARFL (nuclear prelamin A recognition factor-like), a cytosolic protein that plays a role in the cytosolic iron-sulfur protein assembly pathway. We therefore propose that human IscA1 plays an important role in both mitochondrial and cytosolic iron-sulfur cluster biogenesis, and a notable component of the latter is the interaction between IscA1 and IOP1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据