4.6 Article

Ribosomal Protein S12 and Aminoglycoside Antibiotics Modulate A-site mRNA Cleavage and Transfer-Messenger RNA Activity in Escherichia coli

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 46, 页码 32188-32200

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.062745

关键词

-

资金

  1. National Institutes of Health [GM078634]

向作者/读者索取更多资源

Translational pausing in Escherichia coli can lead to mRNA cleavage within the ribosomal A-site. A-site mRNA cleavage is thought to facilitate transfer-messenger RNA (tmRNA).SmpB-mediated recycling of stalled ribosome complexes. Here, we demonstrate that the aminoglycosides paromomycin and streptomycin inhibit A-site cleavage of stop codons during inefficient translation termination. Aminoglycosides also induced stop codon read-through, suggesting that these antibiotics alleviate ribosome pausing during termination. Streptomycin did not inhibit A-site cleavage in rpsL mutants, which express streptomycin-resistant variants of ribosomal protein S12. However, rpsL strains exhibited reduced A-site mRNA cleavage compared with rpsL(+) cells. Additionally, tmRNA.SmpB-mediated SsrA peptide tagging was significantly reduced in several rpsL strains but could be fully restored in a subset of mutants when treated with streptomycin. The streptomycin-dependent rpsL(P90K) mutant also showed significantly lower levels of A-site cleavage and tmRNA.SmpB activity. Mutations in rpsD (encoding ribosomal protein S4), which suppressed streptomycin dependence, were able to partially restore A-site cleavage to rpsL(P90K) cells but failed to increase tmRNA.SmpB activity. Taken together, these results show that perturbations to A-site structure and function modulate A-site mRNA cleavage and tmRNA.SmpB activity. We propose that tmRNA.SmpB binds to streptomycin-resistant rpsL ribosomes less efficiently, leading to a partial loss of ribosome rescue function in these mutants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Biochemistry & Molecular Biology

A novel family of toxin/antitoxin proteins in Bacillus species

Laura E. Holberger, Fernando Garza-Sanchez, James Lamoureux, David A. Low, Christopher S. Hayes

FEBS LETTERS (2012)

暂无数据