4.6 Article

Aggregation and Amyloid Fibril Formation Induced by Chemical Dimerization of Recombinant Prion Protein in Physiological-like Conditions

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 45, 页码 30907-30916

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.057950

关键词

-

资金

  1. Canadian Institutes for Health Research

向作者/读者索取更多资源

Prion diseases are caused by the conversion of a cellular protein (PrPC) into a misfolded, aggregated isoform (PrPRes). Misfolding of recombinant PrPC in the absence of PrPRes template, cellular factors, denaturing agents, or at neutral pH has not been achieved. A number of studies indicate that dimerization of PrPC may be a key step in the aggregation process. In an effort to understand the molecular event that may activate misfolding of PrPC in more relevant physiological conditions, we tested if enforced dimerization of PrPC may induce a conformational change reminiscent of the conversion of PrPC to PrPRes. We used a well described inducible dimerization strategy whereby a chimeric PrPC composed of a modified FK506-binding protein (Fv) fused with PrPC and termed Fv-PrP is incubated in the presence of a monomeric FK506 or dimerizing AP20187 ligand. Addition of AP20187 but not FK506 to recombinant Fv-PrP (rFv-PrP) in physiological-like conditions resulted in a rapid conformational change characterized by an increase in beta-sheet structure and simultaneous aggregation of the protein. Aggregates were partially resistant to proteinase K and induced the conversion of soluble rFv-PrP in serial seeding experiments. As judged from thioflavin T binding and electron microscopy, aggregates converted to amyloid fibers. Aggregates were toxic to cultured cells, whereas soluble rFv-PrP and amyloid fibers were harmless. This study strongly supports the proposition that dimerization of PrPC is a key pathological primary event in the conversion of PrPC and may initiate the pathogenesis of prion diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据