4.6 Article

Conserved Active Site Sequences in Arabidopsis Plastid Terminal Oxidase (PTOX) IN VITRO AND IN PLANTA MUTAGENESIS STUDIES

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 34, 页码 22625-22632

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.017905

关键词

-

向作者/读者索取更多资源

The plastid terminal oxidase (PTOX) is distantly related to the mitochondrial alternative oxidase (AOX). Both are members of the diiron carboxylate quinol oxidase (DOX) class of proteins. PTOX and AOX contain 20 highly conserved amino acids, six of which are Fe-binding ligands. We have previously used in vitro and in planta activity assays to examine the functional importance of the Fe-binding sites. In this report, we conduct alanine-scanning mutagenesis on the 14 other conserved sites using our in vitro and in planta assay procedures. We found that the 14 sites fall into three classes: (i) Ala-139, Pro-142, Glu-171, Asn-174, Leu-179, Pro-216, Ala-230, Asp-287, and Arg-293 are dispensable for activity; (ii) Tyr-234 and Asp-295 are essential for activity; and (iii) Leu-135, His-151, and Tyr-212 are important but not essential for activity. Our data are consistent with the proposed role of some of these residues in active site conformation, substrate binding, and/or catalysis. Titration experiments showed that down-regulation of PTOX to similar to 3% of wild-type levels did not compromise plant growth, at least under ambient growth conditions. This suggests that PTOX is normally in excess, especially early in thylakoid membrane biogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据