4.6 Article

The HECT Domain of TRIP12 Ubiquitinates Substrates of the Ubiquitin Fusion Degradation Pathway

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 3, 页码 1540-1549

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M807554200

关键词

-

资金

  1. Korean Ministry of Science and Technology
  2. Korea Science and Engineering Foundation through the Protein Network Research Center at Yonsei University
  3. Seoul RBD Program [10527]
  4. National Research Foundation of Korea [R11-2000-078-02001-0, 2005-2001235] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The ubiquitin fusion degradation (UFD) pathway is a proteolytic system conserved in yeast and mammals in which an uncleavable ubiquitin moiety linked to the N terminus of a protein functions as a degradation signal of the fusion protein. Although key components of the UFD pathway in yeast have been identified, the E3 enzyme of the human UFD pathway has not been studied. In this work, we show that TRIP12 is the E3 enzyme of the human UFD pathway. Thus, TRIP12 catalyzes in vitro ubiquitination of UFD substrates in conjunction with E1, E2, and E4 enzymes. Knockdown of TRIP12 stabilizes not only artificial UFD substrates but a physiological substrate UBB+1. Moreover, TRIP12 knockdown reduces UBB+1-induced cell death in human neuroblastoma cells. Surprisingly, complementation of TRIP12 knockdown cells with the TRIP12 HECT domain mostly restores efficient degradation of UFD substrates, indicating that the TRIP12 HECT domain can act as the E3 enzyme for the UFD pathway in human cells. The TRIP12 HECT domain directs ubiquitination of UFD substrates in vitro and can be specifically cross-linked to the ubiquitin moiety of the substrates in vivo, suggesting that the TRIP12 HECT domain possesses a noncovalent ubiquitin-binding site. In addition, we demonstrate that Ub Delta GG, a mutant ubiquitin that cannot be conjugated to other proteins, is a substrate of the TRIP12 HECT domain both in vivo and in vitro, indicating that the C-terminal extension fused to the uncleavable ubiquitin is not required for substrate recognition in the UFD pathway. These results provide new insights into the mechanism of the mammalian UFD pathway and the functional nonequivalence of different HECT domains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据