4.6 Article

Complex I Function Is Defective in Complex IV-deficient Caenorhabditis elegans

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 10, 页码 6425-6435

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M805733200

关键词

-

资金

  1. National Institutes of Health [GM58881, AG026273]
  2. Royal Thai Government, Science and Technology Scholarship

向作者/读者索取更多资源

Cytochrome c oxidase (COX) is hypothesized to be an important regulator of oxidative phosphorylation. However, no animal phenotypes have been described due to genetic defects in nuclear-encoded subunits of COX. We knocked down predicted homologues of COX IV and COX Va in the nematode Caenorhabditis elegans. Animals treated with W09C5.8 (COX IV) or Y37D8A.14 (COX Va) RNA interference had shortened lifespans and severe defects in mitochondrial respiratory chain function. Amount and activity of complex IV, as well as super-complexes that included complex IV, were decreased in COX-deficient worms. The formation of supercomplex I:III was not dependent on COX. We found that COX deficiencies decreased intrinsic complex I enzymatic activity, as well as complex I-III enzymatic activity. However, overall amounts of complex I were not decreased in these animals. Surprisingly, intrinsic complex I enzymatic activity is dependent on the presence of complex IV, despite no overall decrease in the amount of complex I. Presumably the association of complex I with complex IV within the supercomplex I:III:IV enhances electron flow through complex I. Our results indicate that reduction of a single subunit within the electron transport chain can affect multiple enzymatic steps of electron transfer, including movement within a different protein complex. Patients presenting with multiple defects of electron transport may, in fact, harbor a single genetic defect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据