4.6 Article

Structural Analysis and Detection of Biological Inositol Pyrophosphates Reveal That the Family of VIP/Diphosphoinositol Pentakisphosphate Kinases Are 1/3-Kinases

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 3, 页码 1863-1872

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M805686200

关键词

-

资金

  1. National Institutes of Health (NIH) Intramural Research Program of the NIEHS
  2. NIH [R01 HL-55672, R01 A1057588]
  3. Howard Hughes Medical Institute
  4. Deutsche Forschungsgemeinschaft [MA 989/2-3]
  5. National Science Foundation
  6. NIH
  7. North Carolina Biotechnology Center
  8. Duke University
  9. [NCI P30CA- 14236]

向作者/读者索取更多资源

We have characterized the positional specificity of the mammalian and yeast VIP/diphosphoinositol pentakisphosphate kinase (PPIP5K) family of inositol phosphate kinases. We deployed a microscale metal dye detection protocol coupled to a high performance liquid chromatography system that was calibrated with synthetic and biologically synthesized standards of inositol pyrophosphates. In addition, we have directly analyzed the structures of biological inositol pyrophosphates using two-dimensional H-1-H-1 and H-1-P-31 nuclear magnetic resonance spectroscopy. Using these tools, we have determined that the mammalian and yeast VIP/PPIP5K family phosphorylates the 1/3-position of the inositol ring in vitro and in vivo. For example, the VIP/PPIP5K enzymes convert inositol hexakisphosphate to 1/3-diphosphoinositol pentakisphosphate. The latter compound has not previously been identified in any organism. We have also unequivocally determined that 1/3,5-(PP)(2)-IP4 is the isomeric structure of the bis-diphosphoinositol tetrakisphosphate that is synthesized by yeasts and mammals, through a collaboration between the inositol hexakisphosphate kinase and VIP/PPIP5K enzymes. These data uncover phylogenetic variability within the crown taxa in the structures of inositol pyrophosphates. For example, in the Dictyostelids, the major bis-diphosphoinositol tetrakisphosphate is 5,6-(PP)(2)-IP4 (Laussmann, T., Eujen, R., Weisshuhn, C. M., Thiel, U., Falck, J. R., and Vogel, G. (1996) Biochem. J. 315, 715-725). Our study brings us closer to the goal of understanding the structure/function relationships that control specificity in the synthesis and biological actions of inositol pyrophosphates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据