4.6 Article

Uropathogenic Escherichia coli Invades Host Cells via an HDAC6-modulated Microtubule-dependent Pathway

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 1, 页码 446-454

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M805010200

关键词

-

资金

  1. National Institutes of Health [DK068585]

向作者/读者索取更多资源

Strains of uropathogenic Escherichia coli (UPEC) encode filamentous adhesive organelles called type 1 pili that promote bacterial colonization and invasion of the bladder epithelium. Type 1 pilus-mediated interactions with host receptors, including alpha 3 beta 1 integrin, trigger localized actin rearrangements that lead to internalization of adherent bacteria via a zipper-like mechanism. Here we report that type 1 pilus-mediated bacterial invasion of bladder cells also requires input from host microtubules and histone deacetylase 6 (HDAC6), a cytosolic enzyme that, by deacetylating alpha-tubulin, can alter the stability of microtubules along with the recruitment and directional trafficking of the kinesin-1 motor complex. We found that disruption of microtubules by nocodazole or vinblastine treatment, as well as microtubule stabilization by taxol, inhibited host cell invasion by UPEC, as did silencing of HDAC6 expression or pharmacological inhibition of HDAC6 activity. Invasion did not require two alternate HDAC6 substrates, Hsp90 and cortactin, but was dependent upon the kinesin-1 light chain KLC2 and an upstream activator of HDAC6, aurora A kinase. These results indicate that HDAC6 and microtubules act as vital regulatory elements during the invasion process, possibly via indirect effects on kinesin-1 and associated cargos.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据