4.6 Article

Epidermal growth factor plays a crucial role in mitogenic regulation of human brain tumor stem cells

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 16, 页码 10958-10966

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M704205200

关键词

-

向作者/读者索取更多资源

A cancer stem cell population in malignant brain tumors takes an essential part in brain tumor initiation, growth, and recurrence. Growth factors, such as epidermal growth factor, fibroblast growth factor-2, vascular endothelial growth factor, platelet-derived growth factor, and hepatocyte growth factor, are shown to support the proliferation of neural stem cells and also may play key roles in gliomagenesis. However, the responsible growth factor(s), which controls maintenance of brain tumor stem cells, is not yet uncovered. We have established three cancer stem cell lines from human gliomas. These cells were immunoreactive with the neuronal progenitor markers, nestin and CD133, and established tumors that closely resembled the features of original tumor upon transplantation into mouse brain. Three cell lines retained their self-renewal ability and proliferation only in the presence of epidermal growth factor (>2.5 ng/ml). In sharp contrast, other growth factors, including fibroblast growth factor-2, failed to support maintenance of these cells. The tyrosine kinase inhibitors of epidermal growth factor signaling (AG1478 and gefitinib) suppressed the proliferation and self-renewal of these cells. Gefitinib inhibited phosphorylation of epidermal growth factor receptor as well as Akt kinase and extracellular signal-regulated kinase 1/2. Flow cytometric analysis revealed that epidermal growth factor concentration-dependently increased the population of CD133-positive cells. Gefitinib significantly reduced CD133-positive fractions and also induced their apoptosis. These results indicate that maintenance of human brain tumor stem cells absolutely requires epidermal growth factor and that tyrosine kinase inhibitors of epidermal growth factor signaling potentially inhibit proliferation and induce apoptosis of these cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据