4.6 Article

Molecular determinants of Xolloid action in vivo

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 40, 页码 27057-27063

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M804232200

关键词

-

资金

  1. Biotechnology and Biological Sciences Research Council [BBS/B/0661X]
  2. Biotechnology and Biological Sciences Research Council [BBS/B/0661X] Funding Source: researchfish

向作者/读者索取更多资源

Xld (Xolloid) is a member of the Tolloid family of metalloproteases found in embryos of the frog Xenopus laevis. It cleaves Chordin, an inhibitory binding protein for BMP2/4, releasing fragments with reduced affinity for these important ventralizing signals. As a consequence, increasing Xld activity ventralizes Xenopus embryos. We have used this phenotype as an assay to determine the requirement for the C-terminal, nonprotease component of Xld for in vivo activity. This part of the protein is composed of five complement C1r/C1s-sea urchin epidermal growth factor-BMP1 (CUB) and two epidermal growth factor domains, which are thought to be involved in protein-protein interactions and may confer substrate specificity. Our results show that the protease coupled to CUB1 and CUB2 is the minimum domain structure required to ventralize Xenopus embryos and to block the dorsal axis-inducing activity of Chordin. Xld-CUB1-CUB2 cleaves Chordin, and a protease-inactive version co-precipitates Chordin. Our results indicate that the first and second CUB domains bind Chordin and present it to the protease domain. Protease-inactive Xld blocks the cleavage of Chordin by wild-type Xld and dorsalizes injected Xenopus embryos. We find that protease-inactive Xld-CUB1-CUB2 does not share this activity and that all of the C-terminal domains are required to generate the dorsalized phenotype.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据