4.5 Article

Relative need for conservation assessments of vascular plant species among ecoregions

期刊

JOURNAL OF BIOGEOGRAPHY
卷 38, 期 1, 页码 55-68

出版社

WILEY
DOI: 10.1111/j.1365-2699.2010.02383.x

关键词

Biodiversity; conservation assessment; conservation biogeography; habitat loss; human population; IUCN; plant species; policy; species-area relationship

资金

  1. National University of Singapore
  2. University of Adelaide under an Australian Government
  3. Princeton University
  4. Sarah and Daniel Hrdy Fellowship

向作者/读者索取更多资源

Aim (1) To determine the relative need for conservation assessments of vascular plant species among the world's ecoregions given under-assessed species distributions; (2) to evaluate the challenge posed by the lack of financial resources on species assessment efforts; and (3) to demonstrate the utility of nonlinear mixed-effects models with both homoscedastic and heteroscedastic error structures in the identification of species-rich ecoregions. Location Global. Methods We identified the world's ecoregions that contain the highest vascular plant species richness after controlling for area using species-area relationship (SAR) models built within a mixed-effects multi-model framework. Using quantitative thresholds, ecoregions with the highest plant species richness, historical habitat loss and projected increase in human population density were deemed to be most in need of conservation assessments of plant species. We used generalized linear models to test if countries that overlap with highly important ecoregions are poorer compared with others. Results We classed ecoregions into nine categories based on the relative need for conservation assessments of vascular plant species. Ecoregions of highest relative need are found mostly in the tropics, particularly Southeast Asia, Central America, Tropical Andes and the Cerrado of South America, and the East African montane region and its surrounding areas. Countries overlapping with ecoregions deemed important for conservation assessments are poorer as measured by their capita gross national income than the other countries. The nonlinear mixed modelling framework was effective in reducing residual spatial autocorrelation compared with nonlinear models comprised of only fixed effects. In contrasting multiple SAR models to identify species-rich ecoregions, there was not one SAR model that fitted best across all biomes. Not all SAR models displayed homoscedastic errors; therefore it is important to consider models with both homoscedastic and heteroscedastic error structures. Main conclusions We propose that conservation assessments should be conducted first in ecoregions with the greatest predicted species richness, historical habitat loss and future human population increase. As ecoregions deemed to be important for conservation assessments are located in the poorest countries, we urge international aid agencies and botanic gardens to cooperate with both local and international scientists to fund and implement conservation assessment programmes there.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据