4.2 Article

Self-association of the galectin-9 C-terminal domain via the opposite surface of the sugar-binding site

期刊

JOURNAL OF BIOCHEMISTRY
卷 153, 期 5, 页码 463-471

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jb/mvt009

关键词

association; galectin; NMR; site-directed mutagenesis; T-cell apoptosis

资金

  1. Kagawa University Characteristic Prior Research Fund, Japan
  2. fund for Kagawa University Young Scientists
  3. Grants-in-Aid for Scientific Research [23370054, 23591438] Funding Source: KAKEN

向作者/读者索取更多资源

Galectin-9 is a lectin, which has various biological functions such as T-cell differentiation and apoptosis. Multivalency of carbohydrate binding is required for galectin-9 to function. Although galectin-1 (a proto-type galectin) forms an oligomer to obtain its multivalency, galectin-9 (a tandem-repeat-type one) has two carbohydrate recognition domains (CRD) in one polypeptide. However, a single CRD of galectin-9, especially the C-terminal one, exhibited pro-apoptotic activity suggesting oligomer formation capability. In this study, we monitored the nuclear magnetic resonance (NMR) signals of the backbone atoms of the galectin-9 C-terminal CRD (G9CCRD). Protein concentration dependence of the signals suggested that a region (F1-F4 strands) opposite to the ligand-binding site was involved in the self-association of G9CCRD. Site-directed mutagenesis in this region (Leu210, Trp277 and Leu279 to Thr; G9CCRD-3T) inhibited the self-association of G9CCRD, and improved the solubility, whereas it reduced its pro-apoptotic activity towards T cells. The high pro-apoptotic activity of G9CCRD seems to be due to the ability to form an oligomer. In addition, the same substitution in two-CRD-containing galectin-9 (G9Null-3T) also diminished the self-association and improved its solubility, although it hardly reduced the anti-proliferative and pro-apoptotic activities. G9CCRD contributes the self-association of full-length galectin-9 at high protein concentrations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据