4.4 Article

Functional Characterization of SsaE, a Novel Chaperone Protein of the Type III Secretion System Encoded by Salmonella Pathogenicity Island 2

期刊

JOURNAL OF BACTERIOLOGY
卷 191, 期 22, 页码 6843-6854

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00863-09

关键词

-

资金

  1. Japanese Ministry of Education, Culture, Sports, Science, and Technology [17790292]
  2. Japan Society for the Promotion of Science [21590490]
  3. Kitasato University
  4. Grants-in-Aid for Scientific Research [17790292, 21590490] Funding Source: KAKEN

向作者/读者索取更多资源

The type III secretion system (T3SS) encoded by Salmonella pathogenicity island 2 (SPI-2) is involved in systemic infection and intracellular replication of Salmonella enterica serovar Typhimurium. In this study, we investigated the function of SsaE, a small cytoplasmic protein encoded within the SPI-2 locus, which shows structural similarity to the T3SS class V chaperones. An S. enterica serovar Typhimurium ssaE mutant failed to secrete SPI-2 translocator SseB and SPI-2-dependent effector PipB proteins. Coimmunoprecipitation and mass spectrometry analyses using an SsaE-FLAG fusion protein indicated that SsaE interacts with SseB and a putative T3SS-associated ATPase, SsaN. A series of deleted and point-mutated SsaE-FLAG fusion proteins revealed that the C-terminal coiled-coil domain of SsaE is critical for protein-protein interactions. Although SseA was reported to be a chaperone for SseB and to be required for its secretion and stability in the bacterial cytoplasm, an sseA deletion mutant was able to secrete the SseB in vitro when plasmid-derived SseB was overexpressed. In contrast, ssaE mutant strains could not transport SseB extracellularly under the same assay conditions. In addition, an ssaE(I55G) point-mutated strain that expresses the SsaE derivative lacking the ability to form a C-terminal coiled-coil structure showed attenuated virulence comparable to that of an SPI-2 T3SS null mutant, suggesting that the coiled-coil interaction of SsaE is absolutely essential for the functional SPI-2 T3SS and for Salmonella virulence. Based on these findings, we propose that SsaE recognizes translocator SseB and controls its secretion via SPI-2 type III secretion machinery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据