4.4 Article

Expression and porin activity of p28 and OMP-1F during intracellular Ehrlichia chaffeensis development

期刊

JOURNAL OF BACTERIOLOGY
卷 190, 期 10, 页码 3597-3605

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.02017-07

关键词

-

资金

  1. NIAID NIH HHS [R01AI30010, R01 AI047407, R01 AI030010] Funding Source: Medline

向作者/读者索取更多资源

Ehrlichia chaffeensis, an obligatory intracellular gram-negative bacterium, must take up various nutrients and metabolic compounds because it lacks many genes involved in metabolism. Nutrient uptake by a gram-negative bacterium occurs primarily through pores or channels in the bacterial outer membrane. Here we demonstrate that isolated E. chaffeensis outer membranes have porin activities, as determined by a proteoliposome swelling assay. The activity was partially blocked by an antibody that recognizes the two most abundant outer membrane proteins, P28/OMP-19 and OMP-1F/OMP-18. Both proteins were predicted to have structural features characteristic of porins, including 12 transmembrane segments comprised of amphipathic and anti-parallel P-strands. The sodium dodecyl sulfate stability of the two proteins was consistent with a P-barrel structure. Isolated native P28 and OMP-1F exhibited porin activities, with pore sizes similar to and larger than, respectively, that of OprF, which is the porin with the largest pore size known to date. E. chaffeensis experiences temperature changes during transmission by ticks. During the intracellular development of E. chaffeensis, both P28 and OMP-1F were expressed mostly in the mid-exponential growth phase at 37 degrees C and the late-exponential growth phase at 28 degrees C. The porin activity of proteoliposomes reconstituted with proteins from the outer membrane fractions derived from bacteria in the mid- and late-exponential growth phases at 28 degrees C and 37 degrees C correlated with the expression levels of P28 and OMP-1F. These results imply that P28 and OMP-1F function as porins with large pore sizes, suggesting that the differential expression of these two proteins might regulate nutrient uptake during intracellular E. chaffeensis development at both temperatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据